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Saddle-node ghost-induced low-frequency fluctuations in an external-cavity laser diode
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We investigate numerically the low-frequency fluctuation regime in a laser diode subject to optical feedback.
We demonstrate that a saddle-node ghost can induce this regime.
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I. INTRODUCTION

A semiconductor laser subject to optical feedback exhi
a large variety of dynamical instabilities including chao
These can lead to severe degradation of the laser chara
istics, e.g., the increase of its typical optical linewidth fro
100 MHz to several tens of gigahertz~see Ref.@1# and ref-
erences therein!. When the laser diode is pumped close to
solitary threshold, its optical power can exhibit sudden dr
outs that occur aperiodically. The typical duration betwe
two consecutive dropouts is much larger than the period
the relaxation oscillations or the external-cavity round-t
time. For this reason, this regime is usually referred to as
low-frequency fluctuation~LFF! regime. Already reported in
1977 by Risch and Vourmard@2#, the LFF regime has at
tracted much theoretical and experimental interest. Multi
explanations of its origin have been proposed. A widely
cepted interpretation of this phenomenon was presente
Sano@3# in 1994; it relies on the Lang-Kobayashi equatio
@4# that assume single-mode operation of the laser and w
to moderate amount of external optical feedback. S
showed that the intensity dropouts are caused by crises
tween local chaotic attractors and saddle-type antimodes@3#.
In his analysis, the process of intensity recoveries is ass
ated to a chaotic itinerancy of the system trajectory in ph
space among attractor ruins of external-cavity mo
~ECMs!, with a drift towards the maximum gain mode clo
to which collisions of the attractor ruins of ECMs and an
modes occur.

Contrary to the single-feedback case, the dynamics o
laser diode subject to two optical feedbacks has been po
investigated although its study reveals a great wealth of
namical behaviors. Fischeret al. have reported experimenta
realization of high-dimensional chaos in such a system@5#.
Rogister et al. @6,7# have numerically and experimental
demonstrated that a laser diode subject to a single op
feedback and operating in the low-frequency fluctuation
gime can be stabilized by means of a second optical fe
back. This method relies on the destruction of saddle-t
antimodes responsible for the LFF crises and the creatio
new, stable, maximum gain modes onto which the la
locks. The idea of using a second optical feedback to st
lize an external-cavity laser diode was proposed for the
time by Liu and Ohtsubo in Ref.@8# but in the case of a lase
pumped far above threshold. In this case, however, the ph
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cal mechanisms underlying the laser stabilization are
unknown @8#. Furthermore, the experimental study on t
double-feedback configuration has revealed time-periodic
cillations with frequencies much larger than those that mi
a priori be expected when the laser is biased close to thre
old. Periodic oscillations with similar frequencies have be
found by investigating numerically the Lang-Kobayas
equations extended to the double-feedback configurat
They have been interpreted as resulting from a beating
tween ECMs and antimodes@9,10#.

In this paper, we investigate the dynamics of a semic
ductor laser pumped close to its solitary threshold and s
ject to two optical feedbacks. The increase of one of
feedback rates leads to the destruction of pairs of steady-
solutions. However, even when they have disappeared,
fixed points continue to influence the dynamics of the s
tem. We demonstrate that these saddle-node ghosts can
tiate the intensity dropouts that characterize the lo
frequency fluctuation regime.

II. MODEL AND STEADY-STATE SOLUTIONS

The Lang-Kobayashi equations@4# can be extended to th
problem of a laser diode subject to optical feedback from
double cavity~see Fig. 1! by including a second delay term
in the rate equation for the electric field. Using the sa
normalization as in Ref.@11#, the modified Lang-Kobayash
equations are

dE

ds
5~11 ia!NE1k1E~s2t1!exp~2 iVt1!

1k2E~s2t2!exp~2 iVt2!, ~1!

FIG. 1. Schematic configuration of a laser diode subject to
tical feedback from a double cavity.
©2003 The American Physical Society02-1
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T
dN

ds
5P2N2~112N!uEu2. ~2!

The dimensionless times is measured in units of the photo
lifetime tp ; E(s)5A(s)exp@if(s)# andN(s) are the normal-
ized slowly varying complex electric field and the norma
ized excess carrier number.k1 and k2 are the normalized
feedback rates of the first and second external cavities ant1
andt2 the ratios of the round-trip time to the photon lifetim
for those cavities.a is the linewidth enhancement factor an
V is the product of the angular frequency of the solitary la
and the photon lifetime.P is the dimensionless pumping cu
rent above solitary laser threshold andT the ratio of the
carrier lifetime to the photon lifetime.

The steady-state solutions of Eqs.~1! and~2! can be writ-
ten in the form

E5Asexp@ i ~D2V!s#, ~3!

where the stationary angular frequencyD, the amplitudeAs
and the normalized carrier numberNs satisfy the equations

D5V2k1@a cos~Dt1!1sin~Dt1!#

2k2@a cos~Dt2!1sin~Dt2!#, ~4!

As
25

P2Ns

112Ns
>0, ~5!

and

Ns52k1cos~Dt1!2k2cos~Dt2!. ~6!

In the following, we use typical values for the linewidt
enhancement factor and the ratio of the carrier lifetime to
photon lifetime, namely,a54 andT51000, and we assum
that the laser works at the wavelengthl5780 nm and is
pumped at threshold~i.e., P50). Figure 2~a!, which is ob-

FIG. 2. ~a! Stationary angular frequenciesD as function ofk2.
Thin curves correspond to ECMs, thick curves to antimodes.~b!
Bifurcation diagram of the phase difference function. The first fe
back rate isk157.231023.
02720
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tained from Eq.~4!, shows typical evolutions of the produc
Dt1 of the stationary angular frequencies (D) and the first
feedback delay (t1) whenk2 is varied. The figure is calcu
lated for k157.231023, t151400, t25126711.5
3l/(2ctp), wheretp51 ps is the photon lifetime andc the
velocity of light in vacuum, withk2 as the bifurcation pa-
rameter.

For these numerical values, the phase differences over
round trip in the first and the second cavities are appro
mately Vt1>22.90 mod 2p and Vt2>2.78 mod 2p, re-
spectively. Similarly to the single-feedback case~see Ref.
@1#!, the steady-state solutions are of two kinds: saddle po
that are referred to as antimodes and other solutions that
be stable and are called external cavity modes. Figure~a!
shows that several pairs of external-cavity modes and a
modes collide and disappear through saddle-node bifu
tions as the rate of the second feedback increases. Fur
increases ofk2 lead to the creation of new pairs of stead
state solutions but those are not shown in the figure.

III. NUMERICAL RESULTS

In this section, the bifurcation diagram of the phase d
ference functionf(t)2f(t2t1)1Vt1 @Fig. 2~b!#, the tem-
poral evolution of the intensityuEu2 ~Fig. 3! and the system
trajectories in the plane@f(t)2f(t2t1)1Vt1 ,N(t)#
~Figs. 4 and 5! are calculated by solving numerically Eqs.~1!
and ~2!. The choice of the phase difference function is co
venient because it reduces toDt1 for stationary behaviors
We can, therefore, compare Fig. 2~a! and Fig. 2~b!. When the
first cavity is acting alone, i.e.,k250, the trajectory displays
chaotic itinerancy among seven attractor ruins of exter
cavity modes and collisions with three different antimod
@Fig. 4~a!#. Sharp intensity dropouts are clearly visible
Fig. 3~a!. For k251.231024, the ECM with the lowest

-

FIG. 3. Time traces of the normalized laser intensity fork2

50 ~a!, 1.631024 ~b!, and 1.431023 ~c!. k157.231023. The
time traces have been averaged over 4 ns to model the lim
bandwidth of detectors that are usually employed in experimen
2-2
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frequency and the corresponding antimode collide and dis
pear through a saddle-node bifurcation~Fig. 2!. The LFF
continues however@Fig. 3~b!#, because a crisis with remain
ing antimodes still occur@Fig. 4~b!#. As k2, increases further
the ruin of the chaotic attractor associated to the lowe
frequency external-cavity mode decreases progressivel

FIG. 4. Phase trajectories observed in the plane@f(t)2f(t
2t1)1Vt1 ,N(t)#. Squares show the antimodes; circles t
external-cavity modes.~a! and ~b!: LFF for k250 and k251.6
31024, respectively.~c! Chaotic behavior fork252.831024. ~d!
Limit cycle corresponding to a periodic behavior fork254.5
31024. The first feedback rate isk157.231023 in all cases.

FIG. 5. Phase trajectories observed in the plane@f(t)2f(t
2t1)1Vt1 ,N(t)#. Squares show the antimodes; circles t
external-cavity modes.~a! Stationary behavior fork251.331023,
the laser locks onto the lowest-frequency ECM~filled circle!. ~b!
Atypical LFF for k251.431023. ~c! Chaotic behavior fork2

51.631023. ~d! Limit cycle for k252.231023. The first feedback
rate isk157.231023 in all cases.
02720
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size. Fork252.631024, the attractor does no longer collid
with the saddle-point. Chaotic, quasiperiodic and perio
behaviors are successively observed fromk252.631024 to
8.431024. As an example, a stable chaotic attractor an
limit cycle are shown in Figs. 4~c!, 4~d! for k252.831024

and k254.531024, respectively. At k258.431024, the
lowest-frequency ECM becomes stable through a Hopf bif
cation. Fromk258.431024 to 1.3431023, all trajectories
are attracted by this stable point regardless of the initial c
ditions. As k2 increases, the ECM and the antimode com
close to each other and finally collide atk251.3431023

~Fig. 2! and disappear. Figure 5~a! shows the steady-stat
solutions just before the saddle-node bifurcation. As this p
of steady-state solutions disappears, an atypical LFF is
served; the trajectory in phase space exhibits a chaotic
erancy among the external-cavity modes with a drift towa
the lowest frequencies. The fixed points that have dis
peared atk251.3431023 continue to influence the dynam
ics: they leave a ghost that attracts the trajectory~features of
saddle-node ghost are described in Refs.@12,13#!. The trajec-
tory is then repelled toward higher values of the excess
rier number along the direction of the unstable manifold
the antimode that has disappeared@Fig. 5~b!#. As a result, the
laser exhibits strong intensity dropouts@Fig. 3~c!# that are
not associated to attractor crises. Additional increase ofk2
leads to a progressive attenuation of the influence of the
nihilated fixed points on the dynamics as well as to a
crease in size of the ruin of the nearest chaotic attrac
Chaotic @Fig. 5~c!#, quasiperiodic and periodic@Fig. 5~d!#
behaviors are successively observed. Finally, atk254.8
31023 the laser output becomes stationary. Fork2>4.8
31023, the rest of the bifurcation diagram reveals a scena
similar to that described in Refs.@6,7#, i.e., a succession o
regions within which the laser is locked onto a stable ma
mum gain mode and regions where the laser exhibits c
plex behaviors such as chaos and low-frequency fluctuati

IV. CONCLUSION

By using an extension of the Lang-Kobayashi equatio
we have investigated the dynamics of a laser diode subje
optical feedback from a double cavity and pumped at thre
old. When both cavities are acting in concert, an increase
one of the feedback rate can lead to the annihilations of fi
points through saddle-node bifurcations. We have shown
the saddle-node remnants continue to influence the dyna
and can induce intensity dropouts. This kind of solution ha
not been reported so far in the extensively studied sing
feedback case. We attribute the difficulty to observe su
dynamics in a single-feedback system to the fact that, in
system, an increase of the feedback rate does never lea
the annihilation of fixed points even when multiple roun
trips in the single external cavity are taken into account
the Lang-Kobayashi equations. In the double-feedback c
figuration, annihilation of pairs of external-cavity modes a
antimodes can be achieved regardless of the lengths of
external cavities and in large ranges of feedback phases
each case, a second optical feedback strongly modifies
2-3
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pattern of the steady-state solutions and leads to the des
tion of some of them. However, the second feedback ph
has to be adequately tuned in order to lead to annihilatio
the steady-state solutions with the lowest frequencies
which the remnants can induce atypical LFF.
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